posts tagged with the keyword ‘pcb’

2017.05.29

PCB

Hey, it’s only been six months since my last post about motor controllers and the Power Racing Series so I guess it’s time for an update! If you missed it, I’m working on a tiny electric vehicle that can serve as a reference for teams of beginners to build their own.

Controller

In the last post I talked about a cheap motor controller that required an expensive throttle and alluded to a method of using a cheaper throttle… here is that method.

I started by asking questions on the Power Racing Series Google Group, and people much smarter than myself offered advice, and that’s where I learned about digital potentiometers. I ended up testing my idea with help from this tutorial and eventually got an MCP4131-104E/P-ND digital potentiometer (for less than $1.00) and paired it with an Arduino Nano that was less than $2.50 to create a converter that allows a cheap throttle to be used with a cheap controller.

If at any point you feel like saying “Hey dummy! You should have done it this way!” feel free to leave a comment. Most of my crazy pursuits involve me learning a lot along the way, and this is no exception, so I’ll keep going.

Controller

After I had a working prototype on a protoboard I decided to design a PCB because I’ve been working on getting better at PCB design for the last two years now, and it’s sort of fun (and challenging!) This is the most complex board I’ve worked on so far, and of course, mistake were made…

First of all, see those wires coming off the board? There should be screw terminals there, but I was unaware that the holes were the wrong size and the pins of the screw terminals did not fit. Argh… wires will do for now.

Controller

Everything wired up and ready to go! Except, it didn’t go… Seems I managed to not quite route everything the right way. Back to the drawing, and tracing all the connections with a meter, and I discovered a connection that shouldn’t be there…

Controller

…but that’s what Dremels are for! I was able to cut the trace and get it working. Back to the computer to make a few changes to the PCB. (And yes, I am still using Fritzing. I’ve gotten used to it, and know how it works, so… okay then.)

Controller

A few weeks later I got a new version from our friends at OSH Park and this one fixed the issues and worked! I should still get similar screw terminals but hey, it does what it should do, so that’s something.

You might notice some of the analog pins and some ground connections broken out at the front edge of the board. There are for future enhancements. It would be fairly easy to add in “cruise control” (for parades) or a speed limiter, perhaps with a keyed switch, to allow kids to drive the vehicle safely. (Again, people smarter than me.)

Controller

Whomp! Here’s my “breadboard” showing everything. Batteries to power the motor, and a buck converter to drop the voltage to 12v for the Arduino and a cooling fan. The throttle connected to the converter and then to the motor controller to control things. We’ve also got a DPDT (double-pole, double-throw) switch in there to allow for forward and reverse to the vehicle, and a kill switch, fuse, and voltage meter. Basically all this will need to be jammed into the vehicle to control it. (Don’t worry, we’ll be using larger batteries, thicker wire, and a larger motor.)

Controller

Here’s the controller with a cooling fan mounted to it. I’ll provide files to laser cut or 3D print the mounting pieces, or templates to cut by hand, which is totally doable. (I learned the hard way last year that if not properly cooled the capacitors on these controllers can blow.)

Controller

I also added a bright blue LED to the board (you can choose another color) to indicate when it’s receiving power. Another suggestion I got from someone. I’m sure there is still room for improvement (like, you know, diodes) but hey, it works and I look forward to testing it.

2017.02.05

PCB Milling

One of my goals with the Little CNC Milling Machine was to make my own PCBs. I’ve typically made my own printed circuit boards at home by etching them with chemicals, but the mill opens new opportunities to etch and drill the boards, so I gave it a shot.

I knew the basics, but did a a quick search for posts that might explain things a bit more. (I should note I planned to use Fritzing, Inkscape, MakerCam, and GrblController, all free/open source software available on multiple platforms.)

The two useful posts I found were: PCB designing and isolation milling using only free Software and Hello World, How to Mill Printed Circuit Boards (PCB).

OpenSCAM

I wasn’t really planning on documenting this in-depth, but I got a few photos and screenshots, so I’ll share what I can. I had some bits I grabbed from eBay, 0.1mm Carbide PCB Board 60 Degree V-shape Engraving Bits and 0.8mm Carbide PCB Endmill Engraving Bits (a total of 20 bits for under $10) to work with, so that’s what I used. (I may want to try some 45 degree bits and 0.6mm bits next time.)

Milling Traces

Here’s the “isolation milling” I did with the 60 degree engraving bit. Not bad! You can also see a little mark on the copper board where I homed the machine.

Yeah, I did not have double-sided tape, so I just tapped the board down to my spoil board. The board wasn’t completely flat, and bowed slightly in the middle. I’ll use double-sided tape next time, which will also help with cutting the final profile of the board.

Set Home

I swapped the bit from engraving to drilling and drilled all the holes. It seemed to work well, so… yeah. (Sorry, no photos of drilling!) I then switched back to the engraving bit to (attempt) to cut out the board…

PCB Milled

It worked, but I miscalculated how deep it would need to cut, and ended up lowering the z home and re-running the job again. I might want to use a different bit next time. When I thought the board was cut out enough I pulled it off the machine.

Light Test

The board held up to the light. Oops! Well, the holes didn’t all work. They were close, but not quite all the way through. I ended up using my Tiny Drill Press to finish the holes, and it didn’t work very well as it was difficult to hit the center. Not great.

I also didn’t cut all the way through with the outside profile. Not a big deal for this board, as it would be easy to cut out on the band saw, but more complex boards may not have this luxury. No matter, the amount of board left was paper thin and it came right out. I’ll definitely use a different bit for the final cut next time.

Final PCB

Here’s the final board. It totally worked, but there’s plenty of room for improvement. This probably won’t be the method I use for all my boards. OSH Park does a great job and prototyping PCBs, and Seeed Studio is great for production runs, but I’ll probably mill any new boards I want to test out before sending out to a fab house. Milling also allows me to have a PCB in an hour or so, versus waiting a few weeks.

Of course I’m (sort of) limited to single sided boards, but most of my PCBs are pretty simple, so I’m not concerned yet. Also, once I master the single sided board, I’ll certainly try a two-sided board, I mean… how hard could it be!?

2016.12.04

Teensy BOB 1.4

The folks at Seeed Studio got in touch with me about their Fusion PCB Service and asked if I wanted to try it out. I’ve ordered stuff from Seeed Studio over the last five years or so, and I’ve never been disappointed with their products, and since they offered a coupon to save on an order, I decided to give it a try.

PCB Options

My previous PCB was the Teensy LC BOB v1.3. I ended up making a very small revision and released v1.4, which is the board I used for this Fusion PCB order. I’ve ordered these from OSH Park and they turned out good, so I wanted to compare ordering from Seeed Studio.

I should mention that I am not an Electrical Engineer, but a maker & hacker who learns things by trial and error. I’ve managed to get lucky with the PCBs I’ve ordered and part of that success has probably been due to the sensible defaults that OSH Park uses. By comparison, when uploading my Gerber files to the Fusion PCB service, I was a little overwhelmed. (See image above.) The choices… so many choices! While I didn’t know exactly what every option was, it was easy to choose them and see how it affected the price. Many options caused the price to go up by 2 or 3 or 10 times the amount. This made it easy to decide what not to choose. The one choice that is nice are the colors. OSH Park boards are purple, but you can get Fusion boards in green, red, yellow, blue, white, or black, which is great.

The one tricky form value you need to deal with is Dimensions. By default it is set to 70mm by 70mm, which comes out to $9.90 for 10 PCBs (though they seem to be changing that to 100mm by 100mm for $9.90, slightly better pricing.) You need to input the dimensions of your PCB as they are not detected by the Gerber files you upload. It’s a bit confusing… I guess for small PCBs you can panelize them. I should learn how to do that as it seems you can save money / get more PCBs by doing it.

The $9.90 is the base price for 10 PCBs, but adding more PCBs affects the total cost, but not by much for small boards. I could get 100 of my ATtinyNoisy boards for $18.32. That’s 10 times the number of boards for just twice the price! For the Teensy LC BOB v1.4 it’s $9.90 for 10 and $49.69 for 100. Economies of scale, yo.

Gerber View

One of the things that was missing when I ordered my PCBs was the preview of the board when I uploaded it. Well, either I missed it, or it’s a new feature that was recently added. Here’s what the Gerber preview looks like for my PCB in Fusion.

Teensy BOB 1.4

Teensy BOB 1.4

The boards turned out great. They look amazingly well done, and checking the 20 boards I received they all looked identical.

I actually placed two orders, for the first one I chose the fast shipping option, and the boards were completed within just a few days and shipped from Shenzhen, China to Milwaukee, Wisconsin in two days. Wow. That was for DHL shipping at about $20. Not bad at all.

The second order I chose the cheap shipping option, which was just $10. The boards were completed on November 18th (two days more than the first order) and were shipped, but as of December 4th (16 days later) I still have not received them. They were sent via Singapore Post and should be delivered to Rosemead, California, and then transferred to the USPS for delivery to me. I’m hoping they show up soon. (Update: They showed up on December 15, 2016.)

Teensy BOB 1.4

In summary, I was extremely pleased with the quality of the PCBs I got from the Fusion PCB Service from Seeed Studios. There are a lot of nice options when ordering, and volume pricing can make a lot of boards really cheap. The shipping costs and options are something to consider. With OSH Park the free shipping is nice, but of course you do end up waiting a while for the boards to be produced. OSH Park does have something called ‘Super Swift Service’ which adds $89 to your total. Oh, Fusion also has an “expedited” service that makes your boards in 24 hours, and that’s a $199 charge.

If I get to the point where I need a lot of PCBs for a project, or plan to sell them, Fusion would definitely make sense. If that’s what you need (perhaps for a Learn to Solder kit?) give Fusion a try.

2016.11.27

ATtinyNoisy

I needed some small boards to put an ATtiny85 on, so I drew up a simple board in Fritzing and had them made up at OSH Park.

ATtinyNoisy

Here’s the breadboard view in Fritzing. Whenever I need “holes” to solder random components into I just use screw terminals. I’m sure there’s another/better way, but I’ve not found it yet, so I keep doing it this way.

ATtinyNoisy

Once the breadboard view is done, I go to the PCB view and move things around, make all the connections, and then export the files in Gerber format. Once you have a folder of Gerber files, you can ZIP it up and then upload to OSH Park for fabrication. (I covered this process in a previous post.)

MCN Gerber Viewer

I did find this Mac OS X application called MCN Gerber Viewer which allows you to view Gerber files. You can view the different “layers” and turn them on and off to check your board before fabrication. OSH Park shows you what your board will look like when you upload it, so you can easily check for issues, but MCN Gerber Viewer is still handy to have around to check files before you upload them.

You can download ATtinyNoisy, which includes the Fritzing file and the Gerber files, or just order it from OSH Park.

2016.06.14

Name Tag

I woke up early on Sunday and had an idea for a project, and since I had a bunch of copper boards laying around, and just got some Liquid Tin, I made a super-simple name tag PCB.

Design filled

I started by designing in Inkscape with a canvas slightly larger than what I needed, and a cutting guide the exact size of my copper board.

Design outlined

Here’s the outline of the design, which I exported as a DXF file. The outer line was useful in making a (near) perfect alignment when I put the vinyl on the copper board.

Silhouette

I then imported the DXF file into the Silhouette Studio software so I could cut some vinyl to use as a resist for etching. (As mentioned previously, my etching solution is hydrogen peroxide, vinegar, and a bit of salt.)

Liquid Tin

Etching took over 75 minutes, but after it was done and cleaned off I dropped it into the Liquid Tin. It started getting bright and shiny immediately! (Sorry, no photos of the bare copper because I was working fast.)

LED & resistor

I soldered a blinking LED and a resistor in place, and since I still don’t have a tiny drill at home I went with surface mount of through-hole components, which works fine.

Battery

I also needed power, so I added a CR2032 battery and a binder clip along with a wire. The bottom of the battery (positive) goes against the PCB while the top (negative) gets a wire held against it with the binder clip. (Pretty much just borrowing heavily from the Learn to Solder Kit.)

Name Tag

I did end up drilling and filing a slot for the name tag clip thing, which I stole from my Milwaukee Makerspace badge.

Name Tag

Blink Blink! Maybe I’ll wear it to the National Maker Faire! I’ve got a few more ideas to build circuits that are one part electronics and one part art, so stay tuned!

« Older Entries |


buy the button:

Buy The Button