posts tagged with the keyword ‘sound’

2019.09.30

audio-face-5404

One of the projects I built for Maker Faire Milwaukee this year was AUDIO FACE [APC-320], which consists of the following things.

  • A cabinet built from scrap wood and plastic found at Milwaukee Makerspace and Brinn Labs
  • An Atari Punk Console that Kathy C. from Milwaukee Makerspace gave me for my birthday (which was already assembled!)
  • A 320 watt car stereo amplifier that someone donated to Milwaukee Makerspace, that I then gave to Jon H. for Disco Dalek, and he then gave back to me a year later
  • A really nice car stereo speaker I got from Andy A. from Milwaukee Makerspace for about $10
  • Some LED lights from Les, a long-time Maker Faire Milwaukee volunteer
  • A hefty 12 volt power supply and a 12v to 9v buck converter, which I purchased from Amazon for about $25
  • Some random arcade button I had lying around, a handful of drywall screws, and probably a few more miscellaneous things I forgot…

audio-face-5033

The concept behind this “noisemaker” is a continuation of what Maks, Dustin, and I did back in 2017, which was a series of devices that made sound when action was taken. Typically this was pressing a button, and often with potentiometers of some kind to alter the sound. I ended up building a lot of Arduino-based sound devices. Are these synths? Maybe… Are they noisemakers? I guess so.

audio-face-4992

When you press the button you are responsible for the creation of the sound. If creating weird noises embarrasses you, you have to deal with that. If you are getting into it and everyone else hates it, it’s on you. Only momentary switches are used so no one can turn them all on and walk away. If you’re there, you’re the cause of the sound.

Many of the devices from 2017 were somewhat fragile, built from small pieces of scrap material, and they sat on a table. For AUDIO FACE [APC-320] I wanted a large cabinet, which was pretty much a requirement due to the large speaker, amp, and power supply. While all of the 2017 devices were extremely cheap (built from scrap, found and scavenged speakers and components, and $3 Arduino boards or ATtiny chips) AUDIO FACE [APC-320] was a bit more expensive, probably costing close to $40 USD.

audio-face-5407

As a sculptural piece, I think AUDIO FACE [APC-320] is interesting because of the contrast. Some of the build material is really nice laminate material or higher quality plywood, but it’s assembled in a slapdash method. There are rough edges that don’t line up, and there’s very roughly drilled holes on each side. While I love precisely designing things, I also love just building with no plans on occasion. Just getting to work and figuring it out as I go. This cabinet is that. At least one person mentioned this at Maker Faire, seeing this as quite a contrast to my other pieces which tend to follow a specific grid or use mathematical concepts. It’s not by accident.

audio-face-5411

One other interesting thing about AUDIO FACE [APC-320] is that it’s sort of a bench. I mean, you can sit on it, and if you dial in the right sound and then sit on the button it makes your insides feel funny. I really like this part and may explore this in the future. I also like the fact that it’s sort of a table or a stool. A weird table or stool with controls in the middle of the top surface that makes noise and vibrates, but still… could be a table or a stool.

2019.04.17

octonoise-5573

For this year’s WMSE Art & Music event, I created a new board I call OctoNoise. It’s an eight note piano featuring capacitive touch pads, LEDs, a Teensy LC microcontroller, and some fine woodworking. This is somewhat similar to last year’s piece.

octonoise-laser

You may know me for my work with decagons, but I also work with octagons, and this pattern is known as a 16 cell and it worked well for my design which utilizes 8 touch pads and 8 LEDs.

octonoise-5579

I’m not an amazing woodworker, but after laser cutting wood I can typically sand it, stain it, and add some polyurethane. At least it looks (somewhat) nice. I didn’t alter the bottom piece, and I just left it as a square, the way I received it from WMSE. My original design for this piece (over a year ago) was a bit different, but I wanted this to match the style of last year’s WMSE piece (and I was a bit rushed getting this done.)

octonoise-5583

The OctoNoise features and on/off switch, which is handy because it runs on batteries. I can’t tell you how many times I’ve made electronic things for myself and not included and on/off switch. It’s nice to have one! When you turn it on the touch pads calibrate for about 5 seconds. There’s a startup sound that happens during calibration. (I added a note about that on the back of the piece.)

octonoise-5576

There’s a “somewhat” hidden control knob on the side that ajusts the delay between notes. The way the code is written, it plays one note at a time, but you can alter that to very quickly (or slowly) oscillate between multiple notes. You can get some interesting variances in sound by turning the knob.

Note that it is difficult to turn the knob while also touching the pads to make sound. This is by design, as it’s also difficult (if not damn near impossible without using various parts of your body) to play all the notes at once. This was done to encourage collaboration and playfulness.

octonoise-5589

Here’s a side view. The height was determined by the speaker that was chosen. Once again we’ve put the electronics on display as part of the piece rather than hide them inside an enclosure. They are mean to be celebrated! (Each wire has a label showing what it connects to, if needed.)

octonoise-5591

Here’s the Teensy LC, which runs the code. The board has built it capacitive touch pins, which make writing the code fairly easy. The notes used are C5, D5, E5, F5, G5, A5, B5, C6. This is real piano, and you can play actual songs. I based the code on a project I did for Brown Dog Gadgets a while back. You can check out their Touch Piano on Github.

octonoise-5594

This device also contains an built-in amp with a volume control. Again, a sometimes rare feature in the things I build. Often amps require 12 volts and that’s not always fun to deal with, but I’ve found some that work on variable voltages from 3 to 12 volts, so running them at the same voltage as a microcontroller becomes very easy.

octonoise-3d-parts

Besides all the wood and electronics, there are some 3D printed parts that pull it all together. The on/off switch, delay control, amp, and battery holder all have their own 3D printed part that they attach to and then easily attach to the wood with some #4 screws. Once again, things are left “open” to celebrate rather than hide the electronics.

octonoise-standoff

The other 3D printed pieces are the custom standoffs that raise the top piece above the bottom piece to (partially) enclose the electronics. I created a 2D profile from the original artwork used to laser etch & cut the piece to create the correct angle. I then extruded that design to make the tall standoffs and printed 8 of them.

As usual, I encourage you to check out my Instagram account if you’re interested in seeing confusing photos of these sorts of things coming together.

Oh, one thing I forgot to mention. I liked this piece so much, I made another one so I could keep one for myself. As the old saying goes “If you’re gonna make one, make two!” So I did.

Finally, here are some videos, including one showing me playing both of them at once, which might never happen again!

2018.11.27

sleepy-noise-machine

Now that summer is over and the cold months have arrived we no longer sleep with fans running, but that means we sleep without the sound of fan running, and who can sleep with all that quiet?

The wife asked if I could make something that sounded like a fan, which if you know me, is right up my alley. I grabbed a Raspberry Pi Zero and got to work. I found an audio clip of an oscillating fan (wow, there are tons of fan videos on YouTube!) and dropped it onto an SD card with Raspbian and mpg123 and had something working.

The Raspberry Pi Zero has no built-in audio output so in the past I’ve tried using a USB audio dongle, but the one I tested failed miserably in The Sonic Titan so I decided to go a different route. I used a 1080P HDMI Male VGA Audio Video Converter Adapter Cable for PC Laptop PS3 Xbox I got from eBay and then sent the audio out via HDMI so it would go to the adapter. I also needed a Mini HDMI adapter for that to plug into. It works fine, and I’ve not seen the same audio problems I did with the USB dongle.

As you can see from the photo I used a custom enclosure designed by SparkFun and modified with a stabby knife. ;)

I also used a set of powered speakers, and a dual USB power supply from Monoprice. This was hacked together rather quickly, but it all works quite well. We just plug it in before bedtime and within 30 seconds we’ve got our noise. (It also helps drown out the sound of my cat trying to wake us up at 6am.)

The thing I find most amusing about this project is that even though the Raspberry Pi Zero is a “$5 computer” it comes out to almost $30 when I add in the power supply, SD card, speakers, and HDMI audio adapter. Still, I think it’s a better option than running a full desktop computer or laptop with white noise all night. (Which apparently some people do. I’ve also heard that an old phone or tablet is a good option.)

The thing I like most about “Sleepy Noise Machine” is that is was something I could easily slap together with existing parts I had around the house. I mean, you can buy a white noise machine, but why bother when you can make your own?

2018.03.31

wmse-art-music-0951

When I heard WMSE was doing a fundraising event called Art & Music and was looking for artists to contribute, I wanted in. I got in touch with them and got a blank 12″x12″ board. I’ve done some of these art boards before, once for The Eisner American Museum of Advertising & Design and once for a friend of mine. (And while it’s not a board, I also made this NoiseBowl last year.) Besides myself, I also managed to get most of the people I work with at Brinn Labs to make boards, and a few people at Milwaukee Makerspace also made them.

wmse-art-music-0932

This one is a litte more special to me though… WMSE went on the air in 1981, and while I don’t remember when I actually started listening to it (though I do have my brother to thank) I grew up with WMSE. They played the music I wanted to hear (at least on Wednesday nights when I was in high school.) They introduced me to weird and crazy stuff, and I even got to be a guest on air a few times (and they’ve managed to play a few songs from bands I was in.)

wmse-art-music-0952

Since I’ve been screwing around with making noise with Arduinos in sculptural form I thought I’d continue that obsession practice once again. I’ve been working on a four step sequencer for work, so that’s what this is…

wmse-art-music-0974

If it wasn’t for the stain and attention to fit and finish in creating this piece, it might look like some of my work you’d find inside a museum exhibit. We tend to make a lot of devices that produce sound. (We typically don’t go to great lengths to make them “pretty” though, since they always live inside cabinets and are not seen by the public.

wmse-art-music-0957

wmse-panel-render

Here’s the design for the one cut piece I made. It’s the control panel/user interface, which holds the power switch, potentiometers, and the LEDs. I actually used the CNC router instead of the laser cutter to make it. (Don’t ask why!) It also took some careful drill press operations to get things just right. There was also a lot of sanding involved. (Again, don’t ask.)

wmse-standoff-legs

There are some 3D printed pieces as well. The standoffs used for the speaker, and to hold the control panel in place. They are similar to ones I’ve used before and before, but of course the beauty of 3D printing is that I can change the design each time to match the speaker and hardware used. (Parametric, FTW!)

wmse-art-music-0979

Here’s a short video that demonstrates the noise that this thing makes. The first four knobs adjust the pitch for the four steps, with the fifth knob used to adjust tempo, and the top right knob as a volume control. The LEDs light up showing each step of the sequencer.

wmse-art-music-0983

I also decided when I started to build this that I really wanted one for myself. While I love seeing my artwork go out into the world, sometimes I miss it. Since I was building one, I thought it would be easy to build a second one. Well, it was (fairly) easy, but it was also time consuming. I also had this idea that if anything went wrong, I’d have a backup. Nothing really went wrong, but I did finish the one for WMSE about week before I finished the one for me.

wmse-art-music-0984

If you’re ever curious about the process I go through when building these sorts of things, you might want to head over to Instagram and follow me there. For instance, I posted a photo there… and another, and another, and a video

wmse-art-music-0985

And then I posted more, and then I probably posted even more. So yeah, Instagram tends to be my “in process” photo & video place.

wmse-art-music-0986

And if you’re not hip to Instagram you might find a photo or two (or three) over on Facebook. Not as much shows up there, but we’re still friends, right?

wmse-art-music-0988

wmse-art-music-0989

Enjoy the show!

wmse-art-music-0998

Note: The piece sold for $510! I’m really pleased I was able to support WMSE with this, and I’m thankful a bunch of people liked it enough to bid on it.

2018.01.14

noise-bowl-0353

Back in October of 2017 Marc Ownley (member of Milwaukee Makerspace and amazing metal artist) brought a bunch of wooden bowls to the makerspace and asked members if they wanted to create something unique for the Feed Your Soul event that was happening in November. I took one not knowing what I might do, but it sounded like a fun challenge.

fys-2017

I started to stain the bowl, and had an idea for layering stain using masks, but I just wasn’t feeling it. Then around the middle of October I headed out to Maker Faire Orlando and was gone nearly a week, so when I returned it finally hit me. I had built so many noisemakers for Maker Faire Milwaukee, I thought it appropriate to build one more. And the NoiseBowl was born!

noise-bowl-0357

I did just a bit more staining then a coat of polyurethane, and moved on to the wiring. The sounds this one makes is similar to NoiseMaker VII, although I did add a small amp to kick up the volume a bit. There are 3D printed parts (like NoiseMaker VII has) but in black this time. The speaker legs are borrowed from NoiseMaker IV.

noise-bowl-0358

It is similar to NoiseMaker VII in a lot of ways, which is fine, because that’s one of my favorites in the series.

noise-bowl-0360

At the Feed Your Soul event they hold an auction and people bid on the bowls, with all of the proceeds going to feed the hungry in southeastern Wisconsin, which is awesome. I had a lot of fun making this, and I hope whoever got it appreciates it and finds it to be fun, but more importantly, we were able to help people in need.

noise-bowl-0364

It’s rare that my art goes out into the world and doesn’t return with me. Typically I stick things in a box in the basement or eventually dismantle them (we’ve only got so much basement space!) I don’t know who has the NoiseBowl, but I hope they’re enjoying the noise it makes. Hopefully I can build something again next year.

« Older Entries |


buy the button:

Buy The Button