Laser Maze - Photo by Eric Schneeweis

You may remember the Laser Maze from Milwaukee MakerFest in 2013, or maybe you experienced it at Maker Faire Milwaukee in 2014. Well, it’s coming back! Somehow I volunteered to design & build the hardware for Laser Maze 2015!

Laser Pointers

Step 1: Acquire lasers.

I’ve got a big pile of laser pointers, so far so good. Now, I should mention I didn’t do the set-up in previous years, and I don’t have much to work from, so I’ll be making a bunch of decisions, and if they are terrible, let me know.

In the coming weeks I’ll be designing a 3D printed mount for the laser pointers. It will hold the front half, so we can unscrew the back half to change batteries without removing the laser from its position. There is a zip tie on the laser that slides and rotates into place to hold the button down. (A simple design, we’re going for simple on this whole thing.)

Scoreboard

The scoreboard is an Adafruit 1.2″ 4-Digit 7-Segment Display. I’ll probably use a Teensy 3.1 as the controller, and there will be a big green start button and a big red stop button. You press start at one end of the maze and the counter begins… and when you get to the end you press stop and you know your time from the scoreboard.

Oh, and the laser pointers… they bounce off some mirrors and hit solar panels connected to the Teensy. When you break the beam the voltage from the panel drops (which is recognized on the Teensy) and you get penalized. We’ll add time to your total as well. So if you’re 10 seconds into it and break a beam, the timer will suddenly display 20 seconds instead of 10 (or whatever, we’ll figure out the math later.)

There should also be a buzzer of some kind, for the start, stop, and breaking of the beam. I’m just using a piezo for prototyping, but we’ll make sure we have something LOUD for the event.

There are some notes about everything on the laser maze wiki page, but I’ll keep documenting here as I go.

Here’s a video of the Turndrawble in action… Also, as an added bonus you get to hear the strains of a DC motor moving a gearbox to spin the platter. Turn it up, man!

Don’t forget to check out the blog post and the Turndrawble project page.

Turndrawble

If you’ve been following any of my adventures since I first mentioned a Turntable Drawing Machine, this is the result. The Turndrawble is a machine that uses a spinning platter and a movable arm to create drawings.

Turndrawble

Unlike many of the things I’ve been working on lately, the Turndrawble leans more towards the “art object” side of things than the “here’s all the files/you can easily make one” side of things. That isn’t meant to say you could not make one, but the prime objective was to create an aesthetically pleasing machine that was unique. (I hope I did that!)

I also wanted to build a machine I could bring to events and allow people to use in order to create drawings. Often in the past I’ve brought drawing machines places but I’ve ether operated them or they’ve operated (semi-) autonomously. The Turndrawble presents a chance for the viewer to become a participant.

Turndrawble

(I’ll be posting photos of some of the drawings soon as well. There’s also a video.)

Check out the Turndrawble project page for more info, links to files, etc. if case you want to try to build your own. (I’ve been thinking of building a much smaller and simpler version as a kit you can purchase and assemble. Stay tuned for updates on that.)

The Badger: Waterproof USB Solar Panel

For the past nine months I’ve been working with Brown Dog Gadgets on a number of projects. It’s been mostly kits for the educational market, and I’ve done a lot of design work, and a bit of electronics prototyping, as well as writing code and lending a bit of advice about marketing. The most recent project is The Badger, a waterproof USB solar charger.

You may remember that two years ago Josh launched a campaign for solar chargers and it did pretty well. Since then he’s taken feedback and requests from customers and came up with The Badger, which offers a number of improvements, mainly the waterproof qualities, but it’s also a damn tough panel! We’ve run it over with a car, dropped a bowling ball on it, and shot at it with a gun. Oh, it also sat it water for two days, and worked just fine when we pulled it out.

8watt, 12watt, 16watt solar chargers

Why am I telling you all of this? Well, if you need a solar panel for any outdoor activity, these are pretty awesome. And, if you back the project, not only will you get a great charger, you will help fund my work. Yes, that’s right. Josh and I have a few projects we’d love to launch, but they depend on this Kickstarter campaign being successful. The more successful the campaign is, the more we can produce. What will we be creating? It may be programmable drawing machines, or creative robotics projects, or some combination of those (or something else.) Whatever is it, it will inspire kids (and adults) to learn and be creative and have fun.

So yes, get yourself a panel, or a power bank, or just toss a few bucks our way, and we’ll start cranking out some interesting kits. That’s the plan. Check out the video below, or head right to the Kickstarter page.

One of the pieces I needed for my turntable drawing machine was something to hold a bearing in place underneath the platter to support it and let it spin easily. If you’ve ever taken the plate out of your microwave oven to clean it you may have seen a “Microwave Roller Wheel / Turntable Support” thing. (Really, that’s what it’s called. Check Amazon.)

Spinners

I decided to use 608 bearings, mainly because I had a lot of them on hand, but they’re also really easy to get for a low price. (I think I got 30 608ZZ bearings for under $20 from Amazon.)

Bearing Mount

I designed these two arms that would fit into slots cut into the base of the machine, below the platter. Each piece would be locked into place with a 3mm bolt, so there’s holes and t-slots for those. The extra piece you see on the bottom (with the 4 slots and 2 holes) is the mating piece. This was designed based on the arm pieces fitting into it, and I would only need to cut one (hopefully) to test the fit.

The arms are slightly different. The one on the right has a hole large enough for the 8mm bolt to fit through, while the one on the left has a slightly smaller hole. The plan was to tap the smaller hole so the bolt could screw right into it without needing a nut. Do a search for metric tap drill size and you’ll see that a 6.8mm hole is needed to tap it for an 8mm bolt. (Sometimes you can just look on the tap and it’ll tell you what size to make the hole.)

As a bonus, when I share the files for this you can decide which pieces suit you better, depending on the availability of an 8mm tap in your workshop. No tap? Just use the larger hole version and a nut instead.

Bearing and Bolt

When you’ve got a laser cutter and lots of scrap acrylic, it makes a lot of sense to make your own washers and spacers and standoffs. (Assuming acrylic is up to the task of what you’re designing.) The spacers were sized to match the inside part of the bearings allowing the outer part of the bearing to spin freely.

I originally was going to make acrylic nuts as well, but decided on tapping the holes with threads. I still wanted the “hex nut” part of the design, as it’s used to hold the platter in place. So that, in conjunction with the tapped parts, prompted me to make the hex shape at the top of the arms. (It’s the details, right?)

Bearing Holder

The one thing that making and using acrylic nuts would have allowed would have been adjusting the height of the bearing. I could have created a slot for raising or lowering the bolt and bearing combo, so with this design featuring the tapped holes, there was no room for adjustment. Luckily I got it right by the second (or third) attempt.

Arm Spacing

Here’s a shot of the spacing of the bearing holders below the platter. It worked out well and I got the math (mostly) right. I may end up making a new bottom in the future to account for other faulty measurements this time around, but I’ve already adjusted for them and things work well enough.

(For other posts about this turntable, check the posts tagged with dcrlmtm.)

« Older Entries |

support:



photos:


buy the button:

Buy The Button

top recent artists: